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Abstract

The way biological systems respond to changes in parameter values caused by mutations is a key issue
in evolution and quantitative genetics, as it affects fundamental aspects such as adaptation, selective
neutrality, robustness, optimality, evolutionary equilibria, etc. We address this question using the
enzyme-flux relationship as a model of the genotype-phenotype relationship. Applying an analogy10

between electrical circuits and metabolic networks, we show that a behaviour of diminishing returns,
which is commonly observed at various phenotypic levels, is inevitable, irrespective of the complexity
of the system.

Introduction

As reviewed and discussed in various papers [1, 2], the genotype-phenotype (GP) relationship, as15

well as the relationship between adjacent or distant phenotypic levels, often seems to follow a law of
diminishing returns: as the value of a given parameter increases, the gain in value of the phenotypic
output becomes increasingly smaller, and the curve reaches a horizontal asymptote. This type of
response may account in part for the selective neutrality of many molecular polymorphisms [3], the
predominance of antagonistic epistasis between deleterious mutations [2] and the pervasive robustness20

in living systems [4].
The archetypal behaviour of diminishing returns in systems biology is displayed by the relationship

between enzyme activity and flux, which has been comprehensively analysed during the past 50 years
within the framework of the Metabolic Control Analysis (MCA) [5, 6, 7, 8]. However, the MCA
formalism has been mainly developed for linear pathways and not for networks. The way the total25

flux through a network changes in response to variations in enzyme parameters is a central question
in quantitative and evolutionary genetics. In principle, this question can be addressed with systems of
ordinary differential equations. However, most of the time we do not have a sufficient knowledge of the
in vivo parameter values, and furthermore, this approach is not informative regarding possible general
behaviours: beyond the specific responses of particular networks, is there a shape of the enzyme-flux30

relationship that would be qualitatively valid for a majority of situations? Intuitively, a behaviour of
diminishing returns makes sense: irrespective of the complexity of a network, the effect of increasing a
particular parameter value is limited by the fixed values of the other parameters. The purpose of this
brief communication is to examine the validity of this idea.

An electrical analogy for metabolism35

We tackled this question using the analogy between electrical circuits and metabolic networks. There
are several more or less sophisticated versions of this analogy [9, 10, 11, 12, 13, 14]. In most cases,
enzymes are considered to be analogous to resistors and metabolites to nodes.

In electricity, the current across a dipole is written as:40

I =
U

R
(1)
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where U is the potential difference and R the resistance. The ratio
1

R
is the conductance of the dipole.

In enzymology, the rate of a reaction catalysed by a Michaelian enzyme that is far from saturation
is written as [15, 5]:

v ≈ [E]
kcat
KM

(

XS −
XP

Keq

)

(2)

where [E], kcat and KM are respectively the concentration, the catalytic constant and the Michaelis
constant of the enzyme, XS and XP are respectively the concentration of the substrate and concen-45

tration of the product of the reaction and Keq is the equilibrium constant of the reaction.
If we compare the forms of equations 1 and 2, we see that the reaction rate v is analogous to the

electrical current I, the enzyme efficiency F = [E]
kcat
KM

is analogous to the conductance
1

R
and the

difference XS −
XP

Keq

is analogous to the potential difference U .

The total flux through a metabolic network of any complexity is dependent on the enzyme effi-50

ciencies and the topology of the network, in the same way that the total current through an electrical
circuit is dependent on the conductances and the topology of the circuit.

The concept of equivalent conductance

An important characteristic of an electrical circuit is its equivalent resistance, RE, defined as the
resistance of a single resistor that, if it replaced all resistors in the circuit, would result in the same
total current. Thus, the equivalent conductance of the circuit is:

σE =
1

RE

Because the total current through the circuit is

I = σEU

where U is the potential difference at the circuit terminals, the equivalent conductance σE is propor-
tional to the total current I, U being the proportionality constant.55

In the same way, we can define the equivalent enzyme efficiency, FE, of a metabolic network,
whereby XS is metabolised into XP through a single pseudo-reaction. The total flux through the
network is then written as:

J = FE

(

XS −
XP

KE

)

where KE is the equivalent equilibrium constant that depends on all individual equilibrium constants.
The equivalent enzyme efficiency FE is proportional to the total metabolic flux J , (XS − XP

KE
) being

the proportionality constant.

Therefore, characterising the relationship between the conductance σij between nodes i and j and60

the equivalent conductance σE ∝ I in an electrical circuit of any complexity can help answer the
question of the relationship between a particular enzyme efficiency Fij and the equivalent efficiency
FE ∝ J in a metabolic network of any complexity.

Simple circuits

If the resistors in the electrical circuit are exclusively in series and/or in parallel, the equivalent
resistance and the equivalent conductance can be easily calculated by applying the rule of additivity
for resistances and conductances, respectively. For instance, the circuit in figure 1a has resistor R1 in
series with a bypass loop containing resistors R2 and R3 in parallel. Summing the conductances σ2

and σ3 of R2 and R3, respectively, then summing the resistances
1

σ1

and
1

σ2 + σ3

, we get

σE =
σ1(σ2 + σ3)

σ1 + σ2 + σ3
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or, using a notation where the conductances are indexed according to the node numbers flanking each65

resistor (see figure 1):

σE =
σ12σ23

σ12 + σ23

where σ12 = σ1 and σ23 = σ2 + σ3. All the conductances are positive, thus it is easy to show that the
relationship between σE and any of the conductances is a concave hyperbole (figure 1b).

This reduction method of successively grouping resistances can be applied to circuits of any size
provided they only contain resistors in series and in parallel.70

Figure 1: Two basic types of electrical circuits. a. A circuit with resistors exclusively in series and
in parallel. b. Relationship between the equivalent conductance σE and the individual conductances in
circuit a (same colour code as in a). For each curve, one conductance increased from 0 to 20, the other
conductances being fixed. The fixed conductance values are 1/R1 = 1, 1/R2 = 10 and 1/R3 = 1.25.
c. A wheatstone bridge. d. Relationship between the equivalent conductance σE and the individual
conductances in the Wheatstone bridge in c. The fixed conductance values are 1/R1 = 0.43, 1/R2 = 1,
1/R3 = 1.25, 1/R4 = 1 and 1/R5 = 5.

Complex circuits

For circuits that do not contain resistors only in series and/or in parallel, the rule of additivity for
resistances and conductances cannot be used directly. Consider for instance a Wheatstone bridge,
which represents the simplest case of a complex circuit (figure 1c): it is easy to show that the additivity
rule does not apply. More sophisticated techniques, such as the nodal potential method [16] or the75

Delta-Y method that relies on the Kennelly’s theorem [17], have to be used.
Generalising these approaches, Kagan [16] showed that in an n-node circuit (n > 2) of any topology,

the relationship between σE and σij is:

σE =
Aσij +B

Cσij +D
(3)
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where A, B, C et D are constants that depend on the conductances of the circuit out of σij . For
instance, the relationship between σE and the conductances in a Wheatstone bridge is:

σE =
σ12σ24(σ23 + σ13 + σ34) + σ24σ23σ13 + σ12σ23σ34 + σ13σ34(σ12 + σ24 + σ23)

σ23(σ12 + σ24 + σ13 + σ34) + (σ12 + σ24)(σ13 + σ34)
,

If the variable conductance is, say, σ12, we have:

A = σ24σ34 + (σ13 + σ23)(σ24 + σ34)

B = σ13(σ23σ24 + σ24σ34 + σ23σ34)

C = σ13 + σ23 + σ34

D = σ23σ24 + (σ13 + σ34)(σ23 + σ24)

We used Kagan’s developments [16] to further analyse the relationship between σE and individual
conductances σij ’s in a circuit. Equation 3 being the quotient of two affine functions, it is a hyperbola80

equation (unless C = 0, in which case the function is strictly linear, but this could only be obtained
by choosing ad hoc conductance values). Using the theory of concave functions and Jacobi’s theorem,
we show in the Supplementary Information that the relationship between σij and σE is necessarily
concave for all σij , and tends toward a horizontal asymptote with a value of A/C. Figure 1d shows the
curves in the case of a Wheatstone bridge with arbitrary conductance values. Simulations of circuits85

with different topologies were carried out with LTSpice® [18] and gave consistent results: we observed
in all cases increasing hyperbolae with horizontal asymptotes (not shown).

From electric circuits to metabolic networks

The previous developments can be applied to metabolic networks, but are more laborious to write due
to the presence of equilibrium constants of the reactions that have no equivalent term in electrical90

circuits (see the case of a Wheatstone-like metabolic network in Appendix C4 of [19]). However, since
these additional parameters are necessarily positive and act only as multiplicative factors of enzyme
efficiencies, they do not alter the structure of the equations and hence the conclusions drawn from them.
Therefore, in any network of unimolecular reactions catalysed by Michaelian enzymes that are far from
saturation, the relationship between an enzyme parameter (kinetic parameter or concentration) and95

the flux is an increasing concave function with a horizontal asymptote (with the exception of the
unrealistic case where C = 0 [see above]).

Discussion

The law of diminishing returns is valid for every enzyme of such metabolic networks, irrespective of
their topology. As a consequence, the concavity of the enzyme-flux relationship is expected to increase100

with the number of enzymes in the network. Indeed, the summation property of the flux control

coefficients states that CJ
Fk

=
n
∑

k=1

∂ ln J

∂ lnFk

= 1, where n is the total number of enzymes [5, 20]. Thus,

the average control coefficient is 1/n: the more enzymes there are in the network, the smaller the
control of the enzymes on the flux, on average. Smaller control means that enzyme efficiencies are at
or near a plateau, which corresponds to a highly concave enzyme-flux relationship, i.e. robustness to105

mutations of metabolic genes [21, 22].
Interestingly, several studies have reported that the robustness of gene expression patterns increases

as the number of connections and regulatory factors increases [discussed in 23]. These results suggests a
widespread link between robustness – a consequence of diminishing returns – and network complexity,
a link that is possibly valid for any network of transportation of matter and energy (e.g. metabolic110

networks, gene regulatory networks, signal transduction pathways, etc.). Thus, in addition to the
numerous ”local” mechanisms of robustness that are assumed to result from natural selection (feedback
loops, kinetic proofreading, modularity, redundancy, etc. [reviewed in 24, 23, 4, 25]), there would be
an intrinsic robustness, precluding any selective advantage, which emerges from the complexity of the
global cellular network.115
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Supplementary information

Relationship between the conductance of a resistor and the total current in

an electrical circuit175

Relationship between an individual conductance and the equivalent conductance The
junction equations for all node potentials in an electrical circuit of n nodes (n > 2) can be expressed
as:

ΣU = I

where U = (U1, U2, . . . , Un)
T is the vector of the potentials, I = (Iout, 0, . . . , 0, Iin)

T is the vector of
the currents and Σ the conductance matrix in the electrical circuit,

Σ =















c1 −σ12 −σ13 −σ14 . . . −σ1,n

−σ21 c2 −σ23 −σ24 . . . −σ2,n

−σ31 −σ32 c3 −σ34 . . . −σ3,n

...
...

...
...

. . .
...

−σn,1 −σn,2 −σn,3 −σn,4 . . . cn















with ci =
n
∑

j ̸=i
i=1

σij . Note that σij = 0 for non-connected nodes.

Kagan[16] derived the formula for the equivalent conductance in a generic non-simplifiable circuit
and, by posing U1 = ε and Un = 0, showed that

σE =
detΣ′

detΣ′′

where Σ′ is the upper left sub-matrix (n− 1)× (n− 1) of the conductance matrix Σ

Σ′ =















c1 −σ12 −σ13 −σ14 . . . −σ1,n−1

−σ21 c2 −σ23 −σ24 . . . −σ2,n−1

−σ31 −σ32 c3 −σ34 . . . −σ3,n−1

...
...

...
...

. . .
...

−σn−1,1 −σn−1,2 −σn−1,3 −σn−1,4 . . . cn−1















and Σ′′ is the lower right sub-matrix (n− 2)× (n− 2) of Σ′

Σ′′ =











c2 −σ23 −σ24 . . . −σ2,n−1

−σ32 c3 −σ34 . . . −σ3,n−1

...
...

...
. . .

...
−σn−1,2 −σn−1,3 −σn−1,4 . . . cn−1











Kagan [16] showed that each term in detΣ′ and detΣ′′ is positive. Thus, the equivalent conductance
is a ratio of two polynomials of degree (n−1) and (n−2), respectively, with only positive terms. Thus,
it is possible to express σE as:

∀σij σE =
Aσij +B

Cσij +D
(4)

were A, B, C and D are non-negative terms that depend on all conductances other than σij .180

Proof of concavity A real-valued function f : R → R is said to be concave if, ∀x, y ∈ R and
∀α ∈ [0, 1],

f((1− α)x+ αy) ≥ (1− α)f(x) + αf(y) (5)

The function f is given here by eq. 4, so by substituting it in eq. 5 we have:

((1− α)σx
ij + ασy

ij)A+B

((1− α)σx
ij + ασy

ij)C +D
≥ (1− α)

σx
ijA+B

σx
ijC +D

+ α
σy
ijA+B

σy
ijC +D

7



We have to prove that this inequality is valid ∀ij.
Taking the least common denominator and denoting σ∗ = ((1− α)σx

ij + ασy
ij), the above equation

can be written as

(σ∗A+B)(σx
ijC +D)(σy

ijC +D)

(σ∗C +D)(σx
ijC +D)(σy

ijC +D)

≥
(1− α)(σx

ijA+B)(σ∗C +D)(σy
ijC +D) + α(σy

ijA+B)(σ∗C +D)(σx
ijC +D)

(σ∗C +D)(σx
ijC +D)(σy

ijC +D)
(6)

Given that ∀σij , σij ≥ 0 and A,B,C,D ≥ 0, eq. 6 is satisfied if and only if

(σ∗A+B)(σx
ijC +D)(σy

ijC +D)

≥ (1− α)(σx
ijA+B)(σ∗C +D)(σy

ijC +D) + α(σy
ijA+B)(σ∗C +D)(σx

ijC +D)

Thus,

(σ∗A+B)(σx
ijC +D)(σy

ijC +D)

≥ (σ∗C +D)(ADσ∗ + σx
ijσ

y
ijAC + ((1− α)σy

ij + ασx
ij)BC +BD)

ACD(σ∗ − σy
ij)(σ

x
ij − σ∗) +BCD(σx

ij + σy
ij − σ∗ − ((1− α)σy

ij + ασx
ij))

+BC2(σx
ijσ

y
ij − σ∗((1− α)σy

ij + ασx
ij)) ≥ 0 (7)

Noting that
(σ∗ − σy

ij)(σ
x
ij − σ∗) = (

√

α(1− α)σx
ij −

√

α(1− α)σy
ij)

2

σx
ij + σy

ij − σ∗ − ((1− α)σy
ij + ασx

ij) = 0

and
σx
ijσ

y
ij − σ∗((1− α)σy

ij + ασx
ij) = −(

√

α(1− α)σx
ij −

√

α(1− α)σy
ij)

2

eq. 7 can be simplified to

AD −BC ≥ 0 (8)

Thus, this inequality must be satisfied to verify the concave relationship between a particular185

conductance, all others being constant, and the equivalent conductance.
Without loss of generality, we can focus on σ12. We set c′1 = c1 − σ12, c

′
2 = c2 − σ12 and n− 1 = k.

So we have

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c′1 + c′2 −(σ13 + σ23) . . . −(σ1,k + σ2,k)
−(σ31 + σ32) c3 . . . −σ3,k

...
...

. . .
...

−(σk,1 + σk,2) −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

B =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c′1 c′1 −σ13 . . . −σ1,k

c′1 c′1 + c′2 −(σ13 + σ23) . . . −(σ1,k + σ2,k)
−σ31 −(σ31 + σ32) c3 . . . −σ3,k

...
...

...
. . .

...
−σk,1 −(σk,1 + σk,2) −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C =

∣

∣

∣

∣

∣

∣

∣

c3 . . . −σ3,k

...
. . .

...
−σk,3 . . . −ck

∣

∣

∣

∣

∣

∣

∣

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c′2 −σ23 . . . −σ2,k

−σ32 c3 . . . −σ3,k

...
...

. . .
...

−σk,2 −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

8



Now, we need to verify eq. 8 to demonstrate the concave relationship between a particular con-
ductance, all others being fixed, and the equivalent conductance. To this end we used the Jacobi’s
theorem.

Let M denotes the determinant of a matrix M = ∥mij∥
n
1 , M c denotes the determinant of the

matrix of its cofactors M c = ∥Mij∥
n
1 , 1 ≤ p < n and σ

(

i1...in
j1...jn

)

denotes an arbitrary permutation of the
n rows and columns of M . Then

∣

∣

∣

∣

∣

∣

∣

∣

∣

Mi1j1 . . . Mi1jp

Mi2j1 . . . Mi2jp

...
. . .

...
Mipj1 . . . Mipjp

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

mip+1jp+1
. . . mip+1jn

mip+2jp+1
. . . mip+2jn

...
. . .

...
minjp+1

. . . minjn

∣

∣

∣

∣

∣

∣

∣

∣

∣

·Mp−1

Now, note that C is a minor of B obtained by deleting the first two rows and columns of B. Using190

Jacobi’s theorem, with p = 2, n = k, il = l and jl = l ∀l ∈ 1, . . . k, we can express BC as

∣

∣

∣

∣

B11 B12

B21 B22

∣

∣

∣

∣

= (−1)σCB2−1 = CB (9)

since σ = 0 (there are no permutations).
Using the sum property of the determinants, we can rewrite B as

B =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c′1 0 −σ13 . . . −σ1,k

0 c′2 −σ23 . . . −σ2,k

−σ31 −σ32 c3 . . . −σ3,k

...
...

. . .
...

−σk,1 −σk,2 −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and give an explicit expression of the cofactors in eq. 9 :

B11 = D

B12 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −σ23 . . . −σ2,k

−σ31 c3 . . . −σ3,k

...
...

. . .
...

−σk,1 −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −B∗∗

B21 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −σ13 . . . −σ1,k

−σ32 c3 . . . −σ3,k

...
...

. . .
...

−σk,2 −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −B∗

B22 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c′1 −σ13 . . . −σ1,k

−σ31 c3 . . . −σ3,k

...
...

. . .
...

−σk,1 −σk,3 . . . ck

∣

∣

∣

∣

∣

∣

∣

∣

∣

Thus,

BC =

∣

∣

∣

∣

D −B∗∗

−B∗ B22

∣

∣

∣

∣

= DB22 − (B∗)2

where B∗ = B∗∗ since the respective matrices are a transpose of each other.

On the other hand, we can rewrite A as a function of D, B∗ and B22. Using the properties of
determinants, we get

A = 2B∗ +D +B22

We can now substitute all this information in eq. 8:

AD −BC = (2B∗ +D +B22)D − (B22D − (B∗)2) = 2B∗D +D2 + (B∗)2 = (D +B∗)2

9



which is always equal to or greater than zero. Thus eq. 8 is always satisfied, meaning that the
relationship between any conductance and the equivalent conductance is concave for any electrical
circuit, the limits of the hyperbola being

lim
σij→0

σE = B/D and lim
σij→+∞

σE = A/C

195

As the equivalent conductance is proportional to the total current through the circuit, we have
shown that the law of diminishing returns applies to the relationship between any conductance and
the total current, irrespective of the topology of the circuit.
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